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LONGITUDINAL WAVES IN AN ELASTIC MEDIUM WITH A PIECEWISE-LINEAR DEPENDENCE 

OF THE STRESS ON THE STRAIN* 

A.G. KULIKOVSKII and L.A. PEKUROVSKAYA 

Longitudinal waves in an elastic body in which the derivative of the 
stress with respect to the strain (the coefficient of elasticity) can 
undergo a discontinuity are considered. Fronts can be propagated in 
such a body, in which a jumplike change in the coefficient of 
elasticity and the characteristic velocities occurs. It is shown that 
if the front velocity reaches the value of one of the velocities of the 
characteristics, reconstruction of the motion occurs, where the special 
case of the problem of the decay of a weak discontinuity of 
second-order arises, whereupon a change in the front velocity and type 
occurs. The problem under consideration is very similar to the problem 
of the behaviour of an elastic-plastic medium with hardening (although 
mathematically it does not the same as it), for which the front 
classification and certain solutions with front reconstruction are 
given in /l-3/. For a medium of different-modulus, a classification of 
the front is made in /4, 51. Some of these fronts are identical with 
fronts in elastic-plastic media. Solutions of problems of the 
behaviour of weak first-order discontinuities in a different-modulus 
elastic body were examined in /4-l/. The paper by G.Ya. Galin, "Phase 
Transformation Waves" presented at the international conference "Modern 
Mathematical Problems of Mechanics and Their Application" (Moscow, 
1987) was also devoted to flows with a change in properties of the 
medium. 

1. The system of equations describing longitudinal waves in an elastic medium or in a 
gas in the presence of external mass forces that produce an acceleration Q(x, t) has the form 

v' - adax = Q (5, t), u’ - addx = 0, S' = 0 (1.1) 

u = u (0, s) = adax, v = W* 

The dot denotes the partial derivative with respect to time t, X is the Lagrange coordi- 
nate, chosen so that the initial density is constant, w(x, t)is the displacement of the medium 
alonb the x axis, o is the stress referred to the initial density, and S is the entropy. 
The function u (0, 8) gives the properties of the medium and is considered known. 

We shall assume that the derivative (adaa), suffers a discontinuity for (I = a,(S). 
The first two equations of system (1.1) can be converted to the form 

v1* - arias = 0, r = 0 - u*, u1 = u - cD (5, t) 

h-v* - au,/az = F (x, t), F = awax, w = Q (x. t) + aa,iax 

v = (ariau), 

(1.2) 

when the equality S = S(z) is taken into account. We shall later assume that 

i 
(:* 2 = const, 

AS(r) = 
r>O 

c2 = con&, r<O (O<c*<c) 

The function CD is obviously defined apart from an arbitrary function of x whose selection 
affects the initial conditions for q. We shall later use system (1.2) without the subscript 
1 on the v. 

Introducing the new variable 
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we write system (1.2) and its solution in the form 

The integration in the last equalities is performed with respect to time along the 
appropriate characteristics while f and g are the "initial" values of p and q on these 
characteristics. 

Let us consider the motion of the front separating the domains in which 
and h< 0. h = c. We will consider the positive 

h > 0, I = c* 
x direction to be the direction from h > 0 

to h< 0. 
These are the following possibilities for the velocity of the front W 

‘4) w> c,B)c* .< w < c, C) --c*< w< c*, D) --c < w -s -c*. (1.5) 
E) w< -c 

The front D on which h and V are broken is a shock, and the inequality D is its 
evolutionary condition. The relationships /8, 9/ expressing the continuity of the flux of 
momentum and displacement of the medium 

W [ul + Ichl = 0, W [h,Icl + bl = 0 (1.6) 

should be satisfied on the shock. Continuity of the energy flux in case (1.3) is isolated 
and serves to calculate the entropy change. The condition of non-decrease of the entropy is 
satisfied when the inequality D in (1.5) is satisfied /5/. the fronts A, B (fast) and C (slow) 
are fronts with a continuous change in the quantities that intersect both families of character- 
istics and were studied earlier 14, 6, 7/. The relationships on them are the condition for 
the continuity of V and h and the condition of passage h = 0. All the quantities are also 
continuous on the front B but the characteristics with positive velocities take off to both 
sides from this front. Such fronts were called radiating fronts in /5/. Still another 
additional relationship should be given in addition to the conditions of continuity and the 
condition of passage h = 0 on the radiating front for its evolution. It can be assumed /5/ 
that the radiating front itself is a characteristic and the additional relationship thereon 
is a relationship on the characteristic. 

We note that discontinuities, besides those enumerated, that propagate at the character- 
istic velocities can exist in the domains h > 0 and h< 0, which can coincide (merge) 
under certain conditions with one of the continuous fronts listed above. But the discontinuity 
obtained in this manner is not evolutionary and an infinitesimal variation in the quantities 
will result in its splitting into two. 

2. We will consider singularities in the behaviour of a radiating front. As already 
mentioned, the frontcan be regarded as a characteristic (or a narrow bundle of characteristics), 
and consequently we have 

P=Po+SFd~,p,=const,q=g(s+ct)+SFdz (2.1) 

in the domain ahead of the front occupied by the characteristics departing from the front. 
As in (1.4), integration in the expression for q is performed along the characteristics 

dxldt = --e in the zt plane, and in the expression for p, first along a segment of the 
radiating front trajectory (KL in Fig.11, and then along-the characteiistic dxldt = c (LM in 
Fig.1). The passage condition p + 4 = 0 should be satisfied on all lines of the front KLN. 
Using this equality at the points L and N we evaluate h at the points N and M' 

2hnn=p, +QM= ( Fds- s Fds+ 
rkf LN 

1 Fds=- 5 F’dxdt 
MN ALMN 

2hM -= pM + qM, = 1 Fdx- i Fdx- i Fds= 1 F’drdt 
LM’ LN NM’ hLM’N 

(2.2) 
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It is seen that the first partial derivatives of h are equal to zero on both sides of the 
radiating front and the second derivatives along the normal to the line of the front, at 
points where F'f 0, separate and have different signs on different sides of the front. 
Since there should be hM > 0 and hnr, S 0, it is necessary that 

F’,<O (2.3) 

Another necessary condition for the existence of a continuous radiating front is that 
the equation of its motion r = r* (t), determined by the condition p + 4 = 0, where p and q 
are given by the equalities (2.1), should satisfy the evolutonarity conditions (inequality B 
in (1.51, where W= dr,/dt). The quantity W is found as a result of double differentiation 
of the left-hand side of the equality p + 4 = 0 along the front 

F+g’=O 
(F’ + cg”) dt - (dF,‘tlr f g”) dx, = 0, $= = If’ = - ,;;,; y’,n 

(2.4) 

Breakdown of the inequality (2.3) and the evolutionarity conditions can result in re- 
placement of the radiating front by a front of another kind. Thus, if W coincides with C* 
or c, then it can be expected that the radiating front (B) is transformed into the slow (C) 
or fast (A) continuous front. Such a transformation will be considered below as the parameters 
of the problem change. 

Let us clarify what will occur with the radiating front when condition (2.3) is violated. 
Let the dashed line in Fig.1 be given by the equation F' = 0, where F' < 0 below it and 
F’ > 0 above. Without changing the area of the triangle LMN and shifting it along the 
front it is obviously possible to place the point M such that the integral of F' over the 
area of the triangle will vanish and, therefore, h = 0 at the point M. This means that a 
certain line GM on which h = 0 stands off from the point G on the radiating front where 
F’ =O. Depending on its slope at the point G (which depends, in turn, on the slope of the 
line F' = 0) the line mentioned can be either a non-radiating fast front (A) or a radiating 
front (B). In both cases the front velocity at the point G changes jumpwise. The presence 
of this new front GM obviously changes the solution for t> tc and the line GN will no longer 
be a radiating front. 

The front behaviour presented above is associated with the fact that the expansion of 
h (5, t) in the neighbourhood of a point on the radiating front starts with second-order terms 
for F'#O, and the expansion at the point G starts with third-order terms for F'=O. For 
this reason, (2.5) for W that does not contain the third derivative becomes invalid at the 
point G. 

3. We will consider behaviour of the fronts separating the domains where the character- 
istic velocities take the values c and c*. The types of these fronts that satisfy the evol- 
utionarity condition were indicated in (1.3). By virtue of the evolutionarity a small change 
in the perturbations arriving at the front results in a small change in the velocity of the 
front and of the departing perturbations. Non-trivial behaviour of the solution can be expected 
on the boundaries of front existence. One example of such behaviour is examined in Sect.2. 

The reconstruction of the solution when the velocity of the fast front (A) reaches the 
value C at a certain point I, t will be studied below. We will select this point as the 
origin and we will seek the solution in the form of series in x and t. Retaining terms not 
higher than the first degree in the expansion of F and taking into account that the function 
F is determined apart from an arbitrary function of X, as was noted in Sect.l,we set F = bt. 
Moreover, without loss of generality, it can be assumed that p=q=O at the origin. t 

M' .-- k fib- 
, / M 

K 
3 

Fig.1 Fig.2 
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Fig.3 

Expanding expression (1.4) for the invariants of p and q arriving at the discontinuity 
in series and limiting ourselves to terms not higher than quadratic, we obtain 

p = f’ (5 - ct) + ‘i,f” (z - et)2 + ‘l&P (3.1) 

Q = g' (x + ct) + '!& (5 -t ct)" + '!&et2 

Here f', f", g' and f are derivatives of functions that yield the initial conditions for 
p and q, with respect to the arguments of these functions taken for z = 0,t = 0. Considering 
the small distance At = 1 -xic in the direction t between the front and the characteristic 
touching the front at the origin and retaining only terms linear in At, we obtain, using (3.1), 
the equation of the front (A) 

211 = 1, + (I = -!'c (f - SIIC) + %g'z + (Zd' + b/c) 52 = 0 (3.2) 

Using the notation dxldt = w, we obtain from the last equality that the condition W = c 
for t = 0, W > c for t< U and the condition II'> 0 on the front can be written in the 
form g’ = 0, 2d' + b/c < 0, f’ < U (3.3) 

As will be shown below, continuation of the solution in t depends on the values of b and g". 
The second equality of (3.3) prohibits the point with coordinates g", b from lying in the 
shaded part of the plane in Fig.2. 

Let us examine possible cases of front continuation. 
10. Continuation of the interfacial boundary, the radiating front B (Fig.3, 1") on which 

according to (2.4) 

F + 8qidx = bt + g” (5 + ct) = 0, b/f = ccg (W) 5 

--w-C 

the evolutionarity condition c,Q W< c yields 

-2c < b/P < -(c + c*) (3.4) 

(the domain B in Fig.21. 
20. Continuation of the interfacial boundary, the slow front C (Fig.3, 2O) and to which 

the characteristics arrive from both the domain ahead of the front and from the domain behind 
the front. Using the continuity of p on the front A and expression (3.1) for p on the arriv- 
ing characteristics, we find an expression for p in the domain where h = c,,h> 0 (later the 
quantities referring to this domain will be given asterisks while the quantities without the 
asterisks will refer to the domain where h = c, h < 0) 

P * = P (3. - c&)2 $- ‘l,bc,t=, P = (3.5) 
-[2c"< + '/,b (c + c*)l(c - C*))2 

The equation of the front is given by the equation p* + q = 0, and the quantity q is 
defined by (3.1). Dividing the last equality by g" we find 

big” = ac (W) = - [(3c - c*) W- (3c, -c) cl(W- 2c, + c)-' (3.6) 

The function UC(W) changes monotonically in the interval - c,< W<c where the slow 
front is evolutionary and takes on the following values at the ends of this interval: 

01~ (c,) = -(c + c*), ac(- c,)= -I(c - c~)z-4cc,l(c~- 3c,)-1 

They bound a domain of values (sector) in the g", b plane for which the solution contains the 
slow front. One of the boundaries of this sector b = ac(c,)f coincides with the boundaries 
of the domain of existence of the radiating front B where the front velocity changes 
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continuously when this boundary is crossed. Depending on the magnitude of the ratio elc, 

another boundary b = ac(--c,)g’ can lie in the second, third, or fourth quadrants (Fig.2). 
3". Continuation of the interfacial boundary, the shock D (Fig.3, 3"). Substituting 

(1.4) for V and h on both sides of the discontinuity in terms of p, q (from the right of the 
discontinuity) and pe,qx (from the left of the discontinuity) into (1.6) and eliminating p 
from these relationships, we obtain 

W =r c* I(c + c,) q* - tc - c*) P* - %I [Zc*q - (c + c*)‘/* - 

(c - c,) P*I-” 

(3.7) 

The shock-wave velocity is expressed here in terms of the values of the invariants 
corresponding to characteristics arriving at the wave, on the shock. 

Using the continuity of the invariant q for passage through the front A, we find 
ql: == 12c2$ + $b (c - c,)l(c + CJ~(X + c&2 -+ V2bc,t2 (3.8) 

Substituting (3.5) and (3.8) into (3.7) in which we set 5= Wt, we obtain 

big” = an (W) = i(~,~ - 5.~2) W - (es - :z,Z)cllZcW - 3c,2 + ezl-' (3.9) 

The function ELD(~ varies monotonically in the shock interval of evolutionarity -c< W,< 

-c* and takes the following values at its ends: 

an (-c,) = [(c - c*)Z - 4cc*1(3c, - c)_'. an (-c) = -4c (c" $ 
c*")(c" + 3c*Z)_i 

Hence, it is seen that one of the boundaries b = aa(-c,)g” of the domain where the 
solution contains a shock wave coincides, in the plane g", b, with the boundary obtain above 
for the domain where the solution contains the slow front C, where W changes continuously 
during passage through this boundary. The other boundary is given by the equality b = aD 

(-cl&? and lies in the fourth quadrant. 
40. Continuation of the interfacial boundary, the fast front E after whose passage the 

characteristic velocity of the medium changes from the value c* to the value c (Fig.3, e"]. 
The equation of the front is p++g*=O. Substituting (3.5) and (3.81 into this equation we 
find 

b/g” = aE (W) = 8~2 (Cam - cW)[(3cz f c,*) W - c (?K,~ - G)l- (Y.20) 

Since W-can become infinite, it is convenient to write the domain of evolutionarity of 
discontinuities of this type in the form 

-c-t < w-1 ( c-1 

As We* varies within this interval, the function ap:(W) changes monotonically and takes 
the following values at its ends: 

as (-c) = -4c (9 + c*")(c" + 3c*r)-', 0,s (c) = -2c 

In the g", b plane, the boundaries of the domain fox whose points a front of the type 
under consideration is realized in the solution are given by the equations 
b = a~ (c) f. 

b = czE (-c) g” and 
The first of these boundaries coincides with the boundary of the domain of the 

shock wave D, where W changes continuously during passage through this boundary, while the 
second coincides with the boundary of the domain of the existence of the front A (see the 
second inequality in (3.3)). 

The investigation presented shows that if the velocity of the fast front reaches the 
boundary-value W= c, then in the case of the common position when the expansions (3.1) 
satisfying conditions (3.3) are valid for the arriving perturbations, continuation of the 
solution can always be constructed. It contains a front whose type and velocity are determined 
uniquely by the values g" and b in (3.1) (the values of f" and f" in the approximation under 
consideration do not affect the solution). The domain for whose points there are no'other 
solutions corresponds to the solutions containing the radiating front in the g", b plane, 

Problems concerning reconstructing solutions for achieving evolutionarity boundaries by 
the velocity of fronts of other types can be solved analogously. 

We note that if F= Cl, as it was in /d-6/, then the invariants will be conserved along 
the characteristics and the radiating front will never occur(an entire domain can only occur in 
the It plane for constant values of all the quantities). As has been shown, since it is 
possible to set F- bt,h = tonst in the neighbourhood of each point, and the influence of F 
is felt in the neighbourhood of this point in the form of quadratic terms in t, it is con- 
ceivable that the need to introduceradiatingfronts would also not appear in the solution of 
problems of the decay of an arbitrary weak first-order discontinuity. 
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MATERIAL AND SPATIAL REPRESENTATIONS OF THE CONSTITUTIVE RELATIONS 

OF DEFORMABLE MEDIA* 

The problem of giving 
for the constitutive 
(equivalence) to each 

a basis to material and spatial representations 
relations (CR) of media, their correspondence 
other, as well as the problem of the explicit 

resolution of implicit forms of CR (in material and spatial 
representations) are examined from the point of view of the general 
theory of constitutive relationships of the classical mechanics of a 
continuous medium, based on the principles of determinism and 
causality, locality, independence of the reference system, and the 
hypothesis of macrophysical determinacy. 

G.L. BROVKO 

Approaches based on the introduction of spatial-type tensors, used in an Euler descrip- 
tion (/20-281, say) are used in addition to the traditional approaches of the mechanics of a 
continuous medium that are in direct agreement with the macroscopic determinacy hypothesis 
/l, 2/, and expressed from the beginning, as a rule, in the terminology of the material-type 
tensors utilized in the Lagrange description of motion of a medium (see /2-7/, say), or ex- 
plicitly understood by the connection with such tensors (for instance /8-19/l. Numerous papers 
on plasticity that propose extrapolation of the CR, known for small deformations, by some 
method to the case of finite deformations in an Euler description are among them. 

Important questions arise here, in principle: 1) is such extrapolation legitimate from 
the point of view of the general classical theory of CR, i.e., does the CR obtained agree, 
in principle, with the postulate of macroscopic determinability? (the example in /28/ is 
one of the modifications of such an erroneous inconsistency), 2) which is the spatial 
representation (Euler form) of the constructed or known material (Lagrange) CR and 
vice-versa? 3) if the CR is constructed in implicit form, especially in the spatial tensor 
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